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Chapter 1

Complex Numbers and Complex
Algebra

1.1 Introduction

Complex numbers have been introduced to have complete set of solutions for an polynomial equation.
Notation: z ∈ C, z = a+ ib

a : the real part of z
b : the imaginary part of z
i : root to the x2 + 1 = 0
a ≡ Re{a+ ib} b ≡ Im{a+ ib}
Definitions:

1. If z = Re{z}, z is called ”purely real”

2. If z = Im{z}, z is called ”purely imaginary”

3. If z1 = z2, then Re{z1} = Re{z2} and Im{z1} = Im{z2}

insert image here

1.2 Algebraic Definitions

1.2.1 Summation

Let z1 = a1 + ib1 and z2 = a2 + ib2, then

z = z1 + z2 = a+ ib

Where
a = a1 + a2

b = b1 + b2

Properties of Complex Summation:

(i) z1 + z2 = z2 + z1 ; Commutative

(ii) z1 + (z2 + z3) = (z1 + z2) + z3 ; Associative

(iii) z1 + (0 + i0) = z1
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(iv) for any z1 ∈ C, there exists a z2 such that z1 + z2 = 0

(v) Additive inverse of z = a+ ib is −z = −a− ib and is unique

(vi) Subtraction of two complex numbers is defined as

z = z1 + (−z2)

1.2.2 Multiplication

Let z1 = a1 + ib1 and z2 = a2 + ib2, then z = z1 · z2 is defined as:

z = (a1 + ib1)(a2 + ib2)

= (a1a2 − b1b2) + i(a1b2 + a2b1)

Properties of Complex Multiplication

(i) z1z2 = z2z1

(ii) z1(z2z3) = (z1z2)z3

(iii) z1(z2 + z3) = z1z2 + z1z3

(iv) 1 · z1 = z1

(v) If z1 6= 0, then there exists a z such that z1 · z = 1

(vi) If z1 6= 0, then its inverse is unique

1.2.3 More Definitions

For z = a+ ib, its complex conjugate is defined as:

z̄ = a− ib

and its ”modulus” or ”magnitude” is defined as:

|z| =
√
a2 + b2

=
√
z · z̄

=
√
z · z∗

Properties of Complex Conjugation:

(i) (z∗)∗ = z

(ii) (z1 + z2)∗ = z∗1 + z∗2

(iii) (z1z2)∗ = z∗1z
∗
2
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1.2.4 Triangle Equation

∀z1, z2 ∈ C, |z1 + z2| ≤ |z1|+ |z2| Formally, z1 + z2 = (a1 + a2) + i(b1 + b2), Thus,

|z1 + z2|2 = (a1 + a2)2 + (b1 + b2)2

= a2
1 + a2

2 + 2a1a2 + b21 + b22 + 2b1b2

≤ a2
1 + a2

2 + 2|a1||a2|+ b21 + b22 + 2|b1||b2|

= (a2
1 + b21) + (a2

2 + b22) + 2
√

(a2
1 + b21)(a2

2 + b22)

Since, |a1||a2| ≤
√

(a2
1 + b21)(a2

2 + b22)

|z1 + z2|2 ≤ a2
1 + a2

2 + 2|a1||a2|+ b21 + b22 + 2|b1||b2|

= (
√
a2

1 + b21 +
√
a2

2 + b22)2

= (|z1|+ |z2|)2

Thus, |z1 + z2| ≤ |z1|+ |z2|

1.3 Elementary Complex Functions

w(z) = w(x+ iy)

= u(x, y) + iv(x, y)
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Chapter 2

Systems of Linear Algebraic
Equations

Modelling physical systems in terms of linear systems of equation and obtaining solutions of these
systems is of fundamental importance in engineering.

General form of a system of linear algebraic equation is:

a11x1 + a12x2+ · · ·+ a1nxn = c1

a21x1 + a22x2+ · · ·+ a2nxn = c2

...

an1x1 + an2x2+ · · ·+ annxn = cn

m equations

aij : coefficients
ci : values
xj : unknowns

• If we replace x1 with s1, x2 and s2, . . . , xn with s2 in this system and satisfy all the equations,
we say that s1, . . . , sn is a solution to the given system.

• If there exists one or more solutions, the system is consistent

• If there is precisely one solution, the solution is called as unique

• If there are more than one solutions, the solution is called as non-unique

• If there are no solutions, the system is called as inconsistent

• The collection of all solution is called as the solution set

In general, each equation defines a hyperplane in n-dimensional space. The system is consistent if
these hyperplanes has a common intersection. If the intersection of these hyperplanes is just one point,
then the solution is unique.

2.1 Gauss or Gaussian Elimination

Definition:
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1. Addition of a multiple of one equation to another symbolically: (eqj)→ (eqj) + α(eqk)

2. Multiplication of an equation by a non-zero constant symbolically: (eqj)→ α(eqj)

3. Interchange of two equations symbolically: (eqj)↔ (eqk)

Theorem: If one linear system is obtained from another by a finite number of elementary row opera-
tions, then the two systems are equivalent, i.e., they share the same solution set.

Proof: Let the original system be LS1 and the one obtained by using elementary row operations

be LS2. We know that LS1
E1−−→ . . .

Eq−−→ LS2, where E1, . . . , Eq is a sequence of elementary row
operations. Here, by using the method of induction, we will show that LS1 and LS2 share the same
solution set for q = 1:

LS1
E1−−→ LS1

Now, E1 can be any of the 3 elementary row operation, we will consider all of these cases individually:

(i) E1: addition of a multiple of one equation to another:

(eqj)→ (eqj) + α(eqq)

• Now, if (s1, . . . , sn) ∈ SLS1
, then (s1, . . . , sn) satisfies all the equations including (eqj) and

(eqk). Hence, it satisfies the jth equation of LS2 which is (eqj) + α(eqk). Therefore:

SLS1
⊂ SLS2

• Now, if (s1, . . . , sn) ∈ SLS2 , then (s1, . . . , sn) satisfies all the equations including (eqj) and
(eqk) of LS2. Thus it also satisfies (eqj)−α(eqk) as well. But this is the (eqj) of LS1. Thus,
(s1, . . . , sn) also satisfies all the equations in LS1. Hence (s1, . . . , sn) ∈ SLS1

. Therefore

SLS2 ⊂ SLS1

Since
SLS2 ⊂ SLS1 and SLS1 ⊂ SLS2 =⇒ SLS2 = SLS1

(ii) E1: Multiplication of an equation by a non-zero constant

(eqj)→ α(eqj)

• (s1, . . . , sn) ∈ SLS1 then it solves all the equations in LS1. The LS2 differs from LS1 in just
its jth equation. Therefore, to show that (s1, . . . , sn) ∈ SLS2

also satisfies the (eqj) of LS2.
Since (eqj) in LS2 is obtained by multiplying both sides of (eqj) of LS1, and (s1, . . . , sn)
satisfies this equation, (s1, . . . , sn) also satisfies (eqj) of LS2. Therefore (s1, . . . , sn) ∈ SLS2

as well. Therefore SLS1
⊂ SLS2

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann


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Chapter 3

Linear Constant Coefficient
Difference Equations

3.1 Introduction

x[n] = a1x[n− 1] + · · ·+ akx[n− k]︸ ︷︷ ︸
kth order difference equation

Occurs very frequently discrete time systems or discretized models of continuous time systems.
Can investigate the solution based on the following vector matrix relationship:

xn =

 x[n]
...

x[n− k + 1]

 , A =


a1 . . . . . . ak
1 0

. . .
...

1 0

 =

[
[a1 . . . ak]
I 0

]
=⇒ xn = Axn−1

Since xn−1 = Axn−2 we can write:

xn = A(A. . . (A · x0)) = Axx0

where

x0 =

 x[0]
...

x[−k + 1]


 initial conditions

Therefore, given x0, can find xn for any n by multiplying x0 n times wit A. But this is not the
most efficient technique, and also would not provide us a closed form solution. We can get more
insight as follows:

3.2 Eigenvalue Solution

Theorem: if (λ, x0) is an eigenpair of A, then xn = λnx0 is a solution to xn = Anx0

Proof: xn = Anx0 = λnx0

Theorem: If A has a full set of eigenvectors that span Rk, then xn = Anx0 can be solved by

xn =

k∑
i=1

= αiλ
n
i vi where x0 =

k∑
i=1

αivi
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Proof: Simply multiply x0 by An to get

Anx0 =

k∑
i=1

αiA
nvi =

k∑
i=1

αiλ
n
i vi

3.3 Characteristic Equation Solution

Another alternative approach is based on the following observation:

x[n] = a1x[n− 1] + a2x[n− 2] + · · ·+ akx[n− k]

A sequence of the form x[n] = rn would solve the difference equation if:

rn = an−1
r + · · ·+ akr

n−k or rn −n−1
r − · · · − akrn−k = 0, ∀n

=⇒ rn−k (rk − a1r
k−1 − · · · − ak)︸ ︷︷ ︸

characteristic equation = 0 at r

= 0

=⇒ r should be a root of the characteristic equation

This is equivalent to r being and eigenvalue of the A. Hence, there can be at most k distinct r values.
If they are all distinct, then a solution to the original problem be formulated easily by:

x[n] = α1r
n
1 + · · ·+ αkr

n
k =

k∑
i=1

αir
k
i , n ≥ 0

where if we are given a set of initial conditions such as x[0]
...

x[−k + 1]

 or

x[−1]
...

x[−k]


we can find αi’s as the solution tor

−1
1 . . . r−1

k
...

. . .
...

r−k1 . . . r−1
k


︸ ︷︷ ︸

invertible

α1

...
αk

 =

x[−1]
...

x−k



If a root rj has the multiplicity m, then solution can be written as

x[n] = α1r
n
1 + · · ·+ αjr

n
j + αj+1nr

n
j + · · ·+ αj+mn

m−1rnj + · · ·+ αm+kr
n
k

3.4 Z-Transform

A very useful transformation that is commonly used to investigate and design of discrete time systems.
It is also useful in the solution of difference equations.

Definition: Given a sequence x[n], it is also X(z)isdefinedas

X(z) =

∞∑
n=0

x[n]z−n

when the summation converges.

Facts
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1. For finite length sequences z transform converges for any z, except may be z = 0.

2. If the z-transform of a sequence converges, it converges for al |z| > r0, where r0 depends on the
sequence.

Definition: Those z-values for which X(z) is defined are said to be in the ”Region of Convergence”,
or ROC.

Properties

(i) z-transform is linear: ∀x1[n], x2[n] α1 and α2

x1[n]
Z←−−→ X1(z), ROC1

x2[n]
Z←−−→ X2(z), ROC2

Then
α1x1[n] + α2x2[n]

Z←−−→ X1(z) + X2(z), ROC1, ROC2 ⊂ ROC

(ii)

x[n]
Z←−−→ X(z)

x[n− 1]
Z←−−→ z−1X(z) + x[−1]

(iii)

x[n]
Z←−−→ X(z)

x[n− k]
Z←−−→ z−kX(z) + z−k+1x[−1] + z−k+2x[−2] + · · ·+ x[−k]

(iv)

x[n] = an, n ≥ 0

X(z) =

∞∑
n=0

anz−n

=

∞∑
n=0

(az−1)n

=
1

1− az−1
, |az−1| < 1 =⇒ |a| < |z| : ROC

(v)

x[n] = nan, n ≥ 0

X(z) =

∞∑
n=0

nanz−n

=

[ ∞∑
n=0

nanz−(n+1)

]
· z

=

(
− d

dz

∞∑
n=0

anz−n

)
· z

= −
[
d

dz

1

1− az−1

]
· z

X(z) =
az−1

(1− az−1)2
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Note: If the forcing input is one of the eigenvalues, it causes a resonance in the solution, then the
z-transform of it will be multiplied with n.
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Chapter 4

Linear Constant Coefficient
Differential Equations

4.1 Homogeneous Differential Equation

dny

dxn
+ a1

dn−1y

dxn−1
+ · · ·+ an−1

dy

dx
+ any = 0

{
Homogenous nth order Linear, Constant Coeff. DE

4.1.1 First Order Case
dy

dx
+ a1y = 0

Consider a solution in the form y(x) = eλx, then

dy

dx
= λeλx =⇒ λeλx + a1e

λx = 0 =⇒ a1 = −λ

Hence, the general solution is of the form Ce−a1x. To determine C, we need an initial condition such
as y(0). Then y(0) = C =⇒ y(x) = y(0)e−a1x

4.1.2 Second Order Case

d2y

dx2
+ a1

dy

dx
+ a2y = 0

Consider a solution in the form y(x) = eλx

λweλx + a1λe
λx + a2e

λx = 0 =⇒ (λ2 + a1λ+ a2)eλx = 0 =⇒ λ2 + a1λ+ a2︸ ︷︷ ︸
characteristic equation

λ1 =
−a1 +

√
a2

1 − 4a2

2
, λ2 =

−a1 −
√
a2

1 − 4a2

2

for real a1 and a2, we may have two real roots or a pair of complex conjugate roots the general solution
is of the form

y(x) = C1e
λ1x + C2e

λ2x

If we are given initial conditions such as y(0) and y′(0) can uniquely determine C1 and C2.
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Complex Roots Case

For complex root in the form λ1 = a+ jb and it’s conjugate λ2 = a− jb, we add the equation

C1e
a+jbx+ C2e

a−jbx = eax(A cos(bx) +B sin(bx))

to the solution of the differential equation.

Theorem: If the characteristic equation of an nth order linear constant coefficient differential equation
has n-distinct roots, λ1, . . . , λn the set {eλ1x, . . . , eλnx} is linearly independent in any interval I ⊂ R.

Proof: Assume that they are linearly dependent. Then, there should be a set of coefficients not
all zero such that

α1e
λ1x + α2e

λ2x + · · ·+ αne
λnx = 0, ∀x ∈ I

By taking successive derivatives of both sides we get:

α1λ1e
λ1x + α2λ2e

λ2x + · · ·+ αnλne
λnx = 0

...

α1λ
n−1
1 eλ1x + α2λ

n−1
2 eλ2x + · · ·+ αnλ

n−1
n eλnx = 0

=⇒


1 1 . . . 1
λ1 λ2 . . . λn
...

...
...

λn−1
1 λn−1

2 . . . λn−1
n


︸ ︷︷ ︸

Full Rank Vandermonde Matrix for λi 6=λj

·


α1e

λ1x

α2e
λ1x

. . .
αne

λnx

 = 0 =⇒


α1e

λ1x

α2e
λ1x

. . .
αne

λnx

 = 0 =⇒ αie
λix = 0 =⇒ αi = 0

which is a contradiction since all of the coefficients are zero.

Repeated Roots Case

Theorem: If λ1 is a root of order k of the characteristic equation, then eλ1x, xeλ1x, . . . , xk−1eλ1x are
linearly independent solutions of the differential equation.

Proof: Let L[y] = 0 be the operator form of

L[b] =
dnb

dxn
+ a1

dn−1b

dxn−1
+ · · ·+ an−1

db

dx
+ anb

Then L[eλx] = (λ− λ1)kp(λ)eλx. Since λ1 is a root with multiplicity k and order of p(λ) is (n− k).

=⇒ L[eλ1x] = 0 =⇒ eλ1x is a solution

Now, want to show that xeλ1x is also a solution

d

dλ
L[eλx] =

d

dλ
[(λ− λ1)kp(λ)eλx] = k(λ− λ1)k−1p(λ)eλx + (λ− λ1)k

d

dλ
(p(λ)eλx)

Note that:
d

dλ
L[eλx] = L

[
d

dλ
eλx
]

= L[xeλx]

=⇒ L[xeλx]
∣∣
λ=λ1

= k(λ− λ1)k−1p(λ)eλx + (λ− λ1)k
d

dλ
(p(λ)eλx)

∣∣∣∣
λ=λ1︸ ︷︷ ︸

0

=⇒ L[xeλ1x] = 0 =⇒ xeλ1x is also a solution.

Can apply this same procedure to prove that x2eλ1x, . . . , xk−1eλ1x are also solution.
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Chapter 5

Laplace Transforms

5.1 Introduction

General linear integral transform is of the following form

F (s) =

∫ b

a

K(t, s)f(t)dt, K(t, s) : Transformation kernel

The Laplace Transform:

F (s) =

∫ ∞
0

f(t)e−stdt

s : complex valued transform domain variable.

Similar to z-transform, which reduces difference equations to linear algebraic equations, the Laplace
Transform reduces the linear constant coefficient differential equations to linear algebraic equations.

5.2 Calculation of the Transform

F (s) =

∫ ∞
0

e−stdt

convergence is assured if |f(t)| ≤ Kect for t > T

Theorem:For f(t) satisfying

(i) f(t) is piecewise continuous on 0 ≤ t ≤ A, with finite number of discontinuities.

(ii) f(t) is of exponential order, |f(t)| ≤ Kect, t ≥ T , the Laplace Transform F (s) exists for Re{s} >
c.

Proof:

F (s) =

∫ ∞
0

f(t)e−stdt =

∫ T

0

f(t)e−stdt︸ ︷︷ ︸
exists for all s if (i) is valid

+

∫ ∞
T

f(t)e−stdt

∣∣∣∣∫ ∞
T

f(t)e−stdt

∣∣∣∣ ≤ ∫ ∞
T

|f(t)||e−st|dt ≤ K
∫ ∞
t

e−(Re{s}−c)tdt = K
e−(Re{s}−c)T

Re{s} − c
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for Re{s} > c

Notes:

(i) The inverse Laplace Transform is also an integral transform but requires techniques that will
be introduced in EEE-242. Therefore, we will use the inspection technique like we did with the
inversion of the z-transform.

(ii) The inverse of the Laplace Transform is unique if

f1(t)
L←−−→ F1(s)

f2(t)
L←−−→ F2(s)

and ∫ ∞
0

|f1(t)− f2(t)|dt > 0

then F1(s) 6= F2(s)

5.3 Properties of Laplace Transform

(i) L{αu(t) + βv(t)} = αL{u(t)}+ βL{v(t)} is satisfied for ∀α, β, u(t) and v(t) which are of expo-
nential order.

(ii) L−1{αU(s) + βV (s)} = αL−1{U(s)}+ βL−1{V (s)}

(iii) L{f ′(t)} = sL{f(t)} − f(0)

Proof:

L{f ′(t)} =

∫ ∞
0

f ′(t)e−stdt

= f(t)e−st
∣∣∞
0

+ s

∫ ∞
0

f(t)e−stdt

= −f(0) + sF (s)

Note that this property is valid even if f ′(t) is piecewise continuous.

(iv)

L{f ′′(t)} = sL{f ′(t)} − f ′(0)

= s2L{f(t)} − sf(0)− f ′(0)

=⇒ L{f (k)(t)} = skL{f(t)} −
k∑
i=1

sk−if (i−1)(0)

useful in the solution to differential equation with given initial condition.

(v) Translation: L{eatf(t)} L←−−→ F (s− a)
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(vi) Translation in Time: L{f(t− t0)} L←−−→ e−st0F (s)

Proof:

L{f(t− t0)} =

∫ ∞
0

f(t− t0︸ ︷︷ ︸
t̂

)e−s(t̂+t0)dt

=

∫ ∞
t0

f(t̂)e−s(t̂+t0)dt̂

= e−s0tF (s), f(t̂) = 0 for t̂ < 0

(vii)
L{tnf(t)} = (−1)nF (n)(s)

(viii) Convolution property: For f(t) and g(t) which are zero for t < 0, their convolution is defined as:

h(t) = f(t) ~ g(t) = (f ~ g)(t) =

∫ ∞
0

f(τ)g(t− τ)dτ

The Laplace Transform of h(t) is:

H(s) =

∫ ∞
0

h(t)e−st

=

∫ ∞
0

∫ t

0

f(τ)g(t− τ)dτ e−stdt

=

∫ ∞
0

∫ ∞
τ

f(τ)g(t− τ)e−stdtdτ

=

∫ ∞
0

f(τ)

∫ ∞
0

g(t− τ︸ ︷︷ ︸
µ

)e−stdt

 dτ
=

∫ ∞
0

f(τ)

[∫ ∞
0

g(µ)e−s(τ+µ)dµ

]
dτ

=

∫ ∞
0

f(τ)

[∫ ∞
0

g(µ)e−sµdµ

]
e−sτdτ

=

[∫ ∞
0

f(τ)e−sτdτ

] [∫ ∞
0

g(µ)e−sµdµ

]
= F (s) ·G(s) =⇒ H(s) = F (s) ·G(s)
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5.3.1 Transformation Table

f(t) = L−1{F (s)} F (s) = L{f(t)} f(t) = L−1{F (s)} F (s) = L{f(t)}

1
1

s
eat

1

s− a

tn
n!

sn+1

√
t

√
π

2s3/2

sin(at)
a

s2 + a2
cos(at)

s

s2 + a2

t sin(at)
2as

(s2 + a2)2
t cos(at)

s2 − a2

(s2 + a2)2

sin(at+ b)
s sin(b) + a cos(b)

s2 + a2
cos(at+ b)

s cos(b)− a sin(b)

s2 + a2

sinh(at)

5.4 Solution to Linear Constant Coefficient Differential Equa-
tions by Laplace Transform

Example

x′′ + ax′ + bx = f(t)

l L
(s2X(s)− sx(0)− x′(0)) + a(sX(s)− x(0)) + bX(s) = F (s)

=⇒ (s2 + as+ b)X(s) = sx(0) + ax(0) + x′(0) + F (s)

=⇒ X(s) =
(s+ a)x(0) + x′(0)

s2 + as+ b︸ ︷︷ ︸
invert by partial
fraction expansion

+
F (s)

s2 + as+ b︸ ︷︷ ︸
invert by using partial
fraction expansion or
convolution property

5.5 Systems of Linear Differential Equations

a11(t)x′1 + · · ·+ a1n(t)x′n + b11(t)x1 + · · ·+ b1n(t)xn = f1(t)

...

an1(t)x′1 + · · ·+ ann(t)x′n + bn1(t)x1 + · · ·+ bnn(t)xn = fn(t)

aij(t) and bij(t) are known coefficients.

Theorem: Let aij(t), 1 ≤ i, j ≤ n and fi(t), 1 ≤ i ≤ n be continuous on a closed interval I. Also, let
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xi(t0) = bi, 1 ≤ i ≤ n for t0 ∈ I. Then the system

x′1 = a11(t)x1 + . . .+ a1n(t)xn + f1(t)

...

x′n = an1(t)x1 + . . .+ ann(t)xn + fn(t)

has a unique solution on the entire interval I. Note that

(i) The left hand side has individual derivatives. This form can be obtained by using Gauss-Jordan
elimination on the original system.

(ii) The system can be written as:
x′ = A(t)x+ f

where

x =

x1(t)
...

xn(t)

 , A(t) = [aij(t)]n×n, f =

f1(t)
...

fn(t)


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