MATH 241 Engineering Mathematics I

Tolga Talha YILDIZ

April 23, 2019

Chapter 1

Complex Numbers and Complex Algebra

1.1 Introduction

Complex numbers have been introduced to have complete set of solutions for an polynomial equation.
Notation: $z \in \mathbb{C}, z=a+i b$
a : the real part of z
b : the imaginary part of z
i : root to the $x^{2}+1=0$
$a \equiv \operatorname{Re}\{a+i b\} b \equiv \operatorname{Im}\{a+i b\}$
Definitions:

1. If $z=\operatorname{Re}\{z\}, \mathrm{z}$ is called "purely real"
2. If $z=\operatorname{Im}\{z\}, \mathrm{z}$ is called "purely imaginary"
3. If $z_{1}=z_{2}$, then $\operatorname{Re}\left\{z_{1}\right\}=\operatorname{Re}\left\{z_{2}\right\}$ and $\operatorname{Im}\left\{z_{1}\right\}=\operatorname{Im}\left\{z_{2}\right\}$
insert image here

1.2 Algebraic Definitions

1.2.1 Summation

Let $z_{1}=a_{1}+i b_{1}$ and $z_{2}=a_{2}+i b_{2}$, then

$$
z=z_{1}+z_{2}=a+i b
$$

Where

$$
\begin{aligned}
a & =a_{1}+a_{2} \\
b & =b_{1}+b_{2}
\end{aligned}
$$

Properties of Complex Summation:
(i) $z_{1}+z_{2}=z_{2}+z_{1}$; Commutative
(ii) $z_{1}+\left(z_{2}+z_{3}\right)=\left(z_{1}+z_{2}\right)+z_{3}$; Associative
(iii) $z_{1}+(0+i 0)=z_{1}$
(iv) for any $z_{1} \in \mathbb{C}$, there exists a z_{2} such that $z_{1}+z_{2}=0$
(v) Additive inverse of $z=a+i b$ is $-z=-a-i b$ and is unique
(vi) Subtraction of two complex numbers is defined as

$$
z=z_{1}+\left(-z_{2}\right)
$$

1.2.2 Multiplication

Let $z_{1}=a_{1}+i b_{1}$ and $z_{2}=a_{2}+i b_{2}$, then $z=z_{1} \cdot z_{2}$ is defined as:

$$
\begin{aligned}
z & =\left(a_{1}+i b_{1}\right)\left(a_{2}+i b_{2}\right) \\
& =\left(a_{1} a_{2}-b_{1} b_{2}\right)+i\left(a_{1} b_{2}+a_{2} b_{1}\right)
\end{aligned}
$$

Properties of Complex Multiplication
(i) $z_{1} z_{2}=z_{2} z_{1}$
(ii) $z_{1}\left(z_{2} z_{3}\right)=\left(z_{1} z_{2}\right) z_{3}$
(iii) $z_{1}\left(z_{2}+z_{3}\right)=z_{1} z_{2}+z_{1} z_{3}$
(iv) $1 \cdot z_{1}=z_{1}$
(v) If $z_{1} \neq 0$, then there exists a z such that $z_{1} \cdot z=1$
(vi) If $z_{1} \neq 0$, then its inverse is unique

1.2.3 More Definitions

For $z=a+i b$, its complex conjugate is defined as:

$$
\bar{z}=a-i b
$$

and its "modulus" or "magnitude" is defined as:

$$
\begin{aligned}
|z| & =\sqrt{a^{2}+b^{2}} \\
& =\sqrt{z \cdot \bar{z}} \\
& =\sqrt{z \cdot z^{*}}
\end{aligned}
$$

Properties of Complex Conjugation:
(i) $\left(z^{*}\right)^{*}=z$
(ii) $\left(z_{1}+z_{2}\right)^{*}=z_{1}^{*}+z_{2}^{*}$
(iii) $\left(z_{1} z_{2}\right)^{*}=z_{1}^{*} z_{2}^{*}$

1.2.4 Triangle Equation

$\forall z_{1}, z_{2} \in \mathbb{C},\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$ Formally, $z_{1}+z_{2}=\left(a_{1}+a_{2}\right)+i\left(b_{1}+b_{2}\right)$, Thus,

$$
\begin{aligned}
\left|z_{1}+z_{2}\right|^{2} & =\left(a_{1}+a_{2}\right)^{2}+\left(b_{1}+b_{2}\right)^{2} \\
& =a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2}+b_{1}^{2}+b_{2}^{2}+2 b_{1} b_{2} \\
& \leq a_{1}^{2}+a_{2}^{2}+2\left|a_{1}\right|\left|a_{2}\right|+b_{1}^{2}+b_{2}^{2}+2\left|b_{1}\right|\left|b_{2}\right| \\
& =\left(a_{1}^{2}+b_{1}^{2}\right)+\left(a_{2}^{2}+b_{2}^{2}\right)+2 \sqrt{\left(a_{1}^{2}+b_{1}^{2}\right)\left(a_{2}^{2}+b_{2}^{2}\right)}
\end{aligned}
$$

Since, $\left|a_{1}\right|\left|a_{2}\right| \leq \sqrt{\left(a_{1}^{2}+b_{1}^{2}\right)\left(a_{2}^{2}+b_{2}^{2}\right)}$

$$
\begin{aligned}
\left|z_{1}+z_{2}\right|^{2} & \leq a_{1}^{2}+a_{2}^{2}+2\left|a_{1}\right|\left|a_{2}\right|+b_{1}^{2}+b_{2}^{2}+2\left|b_{1}\right|\left|b_{2}\right| \\
& =\left(\sqrt{a_{1}^{2}+b_{1}^{2}}+\sqrt{a_{2}^{2}+b_{2}^{2}}\right)^{2} \\
& =\left(\left|z_{1}\right|+\left|z_{2}\right|\right)^{2}
\end{aligned}
$$

Thus, $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$

1.3 Elementary Complex Functions

$$
\begin{aligned}
w(z) & =w(x+i y) \\
& =u(x, y)+i v(x, y)
\end{aligned}
$$

Chapter 2

Systems of Linear Algebraic Equations

Modelling physical systems in terms of linear systems of equation and obtaining solutions of these systems is of fundamental importance in engineering.

General form of a system of linear algebraic equation is:

$$
\left.\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=c_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=c_{2} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=c_{n}
\end{array}\right\} \text { m equations }
$$

$a_{i j}:$ coefficients
c_{i} : values
x_{j} : unknowns

- If we replace x_{1} with s_{1}, x_{2} and s_{2}, \ldots, x_{n} with s_{2} in this system and satisfy all the equations, we say that s_{1}, \ldots, s_{n} is a solution to the given system.
- If there exists one or more solutions, the system is consistent
- If there is precisely one solution, the solution is called as unique
- If there are more than one solutions, the solution is called as non-unique
- If there are no solutions, the system is called as inconsistent
- The collection of all solution is called as the solution set

In general, each equation defines a hyperplane in n-dimensional space. The system is consistent if these hyperplanes has a common intersection. If the intersection of these hyperplanes is just one point, then the solution is unique.

2.1 Gauss or Gaussian Elimination

Definition:

1. Addition of a multiple of one equation to another symbolically: $\left(e q_{j}\right) \rightarrow\left(e q_{j}\right)+\alpha\left(e q_{k}\right)$
2. Multiplication of an equation by a non-zero constant symbolically: $\left(e q_{j}\right) \rightarrow \alpha\left(e q_{j}\right)$
3. Interchange of two equations symbolically: $\left(e q_{j}\right) \leftrightarrow\left(e q_{k}\right)$

Theorem: If one linear system is obtained from another by a finite number of elementary row operations, then the two systems are equivalent, i.e., they share the same solution set.

Proof: Let the original system be $L S_{1}$ and the one obtained by using elementary row operations be $L S_{2}$. We know that $L S_{1} \xrightarrow{E_{1}} \ldots \xrightarrow{E_{q}} L S_{2}$, where E_{1}, \ldots, E_{q} is a sequence of elementary row operations. Here, by using the method of induction, we will show that $L S_{1}$ and $L S_{2}$ share the same solution set for $q=1$:

$$
L S_{1} \xrightarrow{E_{1}} L S_{1}
$$

Now, E_{1} can be any of the 3 elementary row operation, we will consider all of these cases individually:
(i) E_{1} : addition of a multiple of one equation to another:

$$
\left(e q_{j}\right) \rightarrow\left(e q_{j}\right)+\alpha\left(e q_{q}\right)
$$

- Now, if $\left(s_{1}, \ldots, s_{n}\right) \in S_{L S_{1}}$, then $\left(s_{1}, \ldots, s_{n}\right)$ satisfies all the equations including $\left(e q_{j}\right)$ and $\left(e q_{k}\right)$. Hence, it satisfies the $j^{t h}$ equation of $L S_{2}$ which is $\left(e q_{j}\right)+\alpha\left(e q_{k}\right)$. Therefore:

$$
S_{L S_{1}} \subset S_{L S_{2}}
$$

- Now, if $\left(s_{1}, \ldots, s_{n}\right) \in S_{L S_{2}}$, then $\left(s_{1}, \ldots, s_{n}\right)$ satisfies all the equations including $\left(e q_{j}\right)$ and $\left(e q_{k}\right)$ of $L S_{2}$. Thus it also satisfies $\left(e q_{j}\right)-\alpha\left(e q_{k}\right)$ as well. But this is the $\left(e q_{j}\right)$ of $L S_{1}$. Thus, $\left(s_{1}, \ldots, s_{n}\right)$ also satisfies all the equations in $L S_{1}$. Hence $\left(s_{1}, \ldots, s_{n}\right) \in S_{L S_{1}}$. Therefore

$$
S_{L S_{2}} \subset S_{L S_{1}}
$$

Since

$$
S_{L S_{2}} \subset S_{L S_{1}} \text { and } S_{L S_{1}} \subset S_{L S_{2}} \Longrightarrow S_{L S_{2}}=S_{L S_{1}}
$$

(ii) E_{1} : Multiplication of an equation by a non-zero constant

$$
\left(e q_{j}\right) \rightarrow \alpha\left(e q_{j}\right)
$$

- $\left(s_{1}, \ldots, s_{n}\right) \in S_{L S_{1}}$ then it solves all the equations in $L S_{1}$. The $L S_{2}$ differs from $L S_{1}$ in just its $j^{\text {th }}$ equation. Therefore, to show that $\left(s_{1}, \ldots, s_{n}\right) \in S_{L S_{2}}$ also satisfies the $\left(e q_{j}\right)$ of $L S_{2}$. Since $\left(e q_{j}\right)$ in $L S_{2}$ is obtained by multiplying both sides of $\left(e q_{j}\right)$ of $L S_{1}$, and $\left(s_{1}, \ldots, s_{n}\right)$ satisfies this equation, $\left(s_{1}, \ldots, s_{n}\right)$ also satisfies $\left(e q_{j}\right)$ of $L S_{2}$. Therefore $\left(s_{1}, \ldots, s_{n}\right) \in S_{L S_{2}}$ as well. Therefore $S_{L S_{1}} \subset S_{L S_{2}}$

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right]
$$

Chapter 3

Linear Constant Coefficient Difference Equations

3.1 Introduction

$$
\underbrace{x[n]=a_{1} x[n-1]+\cdots+a_{k} x[n-k]}_{k^{\text {th }} \text { order difference equation }}
$$

Occurs very frequently discrete time systems or discretized models of continuous time systems. Can investigate the solution based on the following vector matrix relationship:

$$
\underline{x}_{n}=\left[\begin{array}{c}
x[n] \\
\vdots \\
x[n-k+1]
\end{array}\right], \underline{\underline{A}}=\left[\begin{array}{cccc}
a_{1} & \ldots & \ldots & a_{k} \\
1 & & & 0 \\
& \ddots & & \vdots \\
& & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
{\left[\begin{array}{c}
a_{1} \\
\underline{I} \\
\underline{\underline{x}} \\
\underline{x}_{k}
\end{array}\right]}
\end{array}\right] \Longrightarrow \underline{x}_{n}=\underline{A x}_{n-1}
$$

Since $\underline{x}_{n-1}=\underline{\underline{A}}_{n-2}$ we can write:

$$
\underline{x}_{n}=\underline{\underline{A}}\left(\underline{\underline{A}} \ldots\left(\underline{\underline{A}} \cdot \underline{x}_{0}\right)\right)=\underline{\underline{A}}^{x} \underline{x}_{0}
$$

where

$$
\left.\underline{x}_{0}=\left[\begin{array}{c}
x[0] \\
\vdots \\
x[-k+1]
\end{array}\right]\right\} \text { initial conditions }
$$

Therefore, given \underline{x}_{0}, can find \underline{x}_{n} for any n by multiplying $\underline{x}_{0} n$ times wit $\underline{\underline{A}}$. But this is not the most efficient technique, and also would not provide us a closed form solution. We can get more insight as follows:

3.2 Eigenvalue Solution

Theorem: if $\left(\lambda, \underline{x}_{0}\right)$ is an eigenpair of $\underline{\underline{A}}$, then $\underline{x}_{n}=\lambda^{n} \underline{x}_{0}$ is a solution to $\underline{x}_{n}=\underline{\underline{A}}^{n} \underline{x}_{0}$
Proof: $\underline{x}_{n}=\underline{\underline{A}}^{n} \underline{x}_{0}=\lambda^{n} \underline{x}_{0}$
Theorem: If $\underline{\underline{A}}$ has a full set of eigenvectors that $\operatorname{span} \mathbb{R}^{k}$, then $\underline{x}_{n}=\underline{\underline{A}}^{n} \underline{x}_{0}$ can be solved by

$$
\underline{x}_{n}=\sum_{i=1}^{k}=\alpha_{i} \lambda_{i}^{n} \underline{v}_{i} \text { where } \underline{x}_{0}=\sum_{i=1}^{k} \alpha_{i} \underline{v}_{i}
$$

Proof: Simply multiply \underline{x}_{0} by $\underline{\underline{A}}^{n}$ to get

$$
\underline{\underline{A}}^{n} \underline{x}_{0}=\sum_{i=1}^{k} \alpha_{i} \underline{\underline{A}}^{n} \underline{v}_{i}=\sum_{i=1}^{k} \alpha_{i} \lambda_{i}^{n} \underline{v}_{i}
$$

3.3 Characteristic Equation Solution

Another alternative approach is based on the following observation:

$$
x[n]=a_{1} x[n-1]+a_{2} x[n-2]+\cdots+a_{k} x[n-k]
$$

A sequence of the form $x[n]=r^{n}$ would solve the difference equation if:

$$
\begin{aligned}
r^{n} & =a_{r}^{n-1}+\cdots+a_{k} r^{n-k} \text { or } r^{n}-{ }_{r}^{n-1}-\cdots-a_{k} r^{n-k}=0, \forall n \\
& \Longrightarrow r^{n-k} \underbrace{\left(r^{k}-a_{1} r^{k-1}-\cdots-a_{k}\right)}_{\text {characteristic equation }=0 \text { at } \mathrm{r}}=0 \\
& \Longrightarrow \text { r should be a root of the characteristic equation }
\end{aligned}
$$

This is equivalent to r being and eigenvalue of the $\underline{\underline{A}}$. Hence, there can be at most k distinct r values. If they are all distinct, then a solution to the original problem be formulated easily by:

$$
x[n]=\alpha_{1} r_{1}^{n}+\cdots+\alpha_{k} r_{k}^{n}=\sum_{i=1}^{k} \alpha_{i} r_{i}^{k}, n \geq 0
$$

where if we are given a set of initial conditions such as

$$
\left[\begin{array}{c}
x[0] \\
\vdots \\
x[-k+1]
\end{array}\right] \text { or }\left[\begin{array}{c}
x[-1] \\
\vdots \\
x[-k]
\end{array}\right]
$$

we can find α_{i} 's as the solution to

$$
\underbrace{\left[\begin{array}{ccc}
r_{1}^{-1} & \ldots & r_{k}^{-1} \\
\vdots & \ddots & \vdots \\
r_{1}^{-k} & \ldots & r_{k}^{-1}
\end{array}\right]}_{\text {invertible }}\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{k}
\end{array}\right]=\left[\begin{array}{c}
x[-1] \\
\vdots \\
x-k
\end{array}\right]
$$

If a root r_{j} has the multiplicity m, then solution can be written as

$$
x[n]=\alpha_{1} r_{1}^{n}+\cdots+\alpha_{j} r_{j}^{n}+\alpha_{j+1} n r_{j}^{n}+\cdots+\alpha_{j+m} n^{m-1} r_{j}^{n}+\cdots+\alpha_{m+k} r_{k}^{n}
$$

3.4 Z-Transform

A very useful transformation that is commonly used to investigate and design of discrete time systems. It is also useful in the solution of difference equations.

Definition: Given a sequence $x[n]$, it is also $\mathbb{X}(z)$ isdefinedas

$$
\mathbb{X}(z)=\sum_{n=0}^{\infty} x[n] z^{-n}
$$

when the summation converges.
Facts

1. For finite length sequences z transform converges for any z, except may be $z=0$.
2. If the z-transform of a sequence converges, it converges for al $|z|>r_{0}$, where r_{0} depends on the sequence.
Definition: Those z-values for which $\mathbb{X}(\digamma)$ is defined are said to be in the "Region of Convergence", or ROC.

Properties

(i) z-transform is linear: $\forall x_{1}[n], x_{2}[n] \alpha_{1}$ and α_{2}

$$
\begin{aligned}
& x_{1}[n] \stackrel{Z}{\longleftrightarrow} \mathbb{X}_{1}(z), R O C_{1} \\
& x_{2}[n] \stackrel{Z}{\longleftrightarrow} \mathbb{X}_{2}(z), R O C_{2}
\end{aligned}
$$

Then

$$
\alpha_{1} x_{1}[n]+\alpha_{2} x_{2}[n] \stackrel{Z}{\longleftrightarrow} \mathbb{X}_{1}(z)+\mathbb{X}_{2}(z), R O C_{1}, R O C_{2} \subset R O C
$$

(ii)

$$
\begin{aligned}
x[n] \stackrel{Z}{\longleftrightarrow} & \mathbb{X}(z) \\
x[n-1] \stackrel{Z}{\longleftrightarrow} & z^{-1} \mathbb{X}(z)+x[-1]
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& x[n] \stackrel{Z}{\longleftrightarrow} \\
& \longleftrightarrow \\
& X(z) \\
& x[n-k] \stackrel{Z}{\longleftrightarrow} \\
& z^{-k} \mathbb{X}(z)+z^{-k+1} x[-1]+z^{-k+2} x[-2]+\cdots+x[-k]
\end{aligned}
$$

(iv)

$$
\begin{aligned}
x[n] & =a^{n}, n \geq 0 \\
\mathbb{X}(z) & =\sum_{n=0}^{\infty} a^{n} z^{-n} \\
& =\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n} \\
& =\frac{1}{1-a z^{-1}},\left|a z^{-1}\right|<1 \Longrightarrow|a|<|z|: R O C
\end{aligned}
$$

(v)

$$
\begin{aligned}
x[n] & =n a^{n}, n \geq 0 \\
\mathbb{X}(z) & =\sum_{n=0}^{\infty} n a^{n} z^{-n} \\
& =\left[\sum_{n=0}^{\infty} n a^{n} z^{-(n+1)}\right] \cdot z \\
& =\left(-\frac{d}{d z} \sum_{n=0}^{\infty} a^{n} z^{-n}\right) \cdot z \\
& =-\left[\frac{d}{d z} \frac{1}{1-a z^{-1}}\right] \cdot z \\
\mathbb{X}(z) & =\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}
\end{aligned}
$$

Note: If the forcing input is one of the eigenvalues, it causes a resonance in the solution, then the z-transform of it will be multiplied with n.

Chapter 4

Linear Constant Coefficient Differential Equations

4.1 Homogeneous Differential Equation

$\frac{d^{n} y}{d x^{n}}+a_{1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{n-1} \frac{d y}{d x}+a_{n} y=0\left\{\right.$ Homogenous $n^{\text {th }}$ order Linear, Constant Coeff. DE

4.1.1 First Order Case

$$
\frac{d y}{d x}+a_{1} y=0
$$

Consider a solution in the form $y(x)=e^{\lambda x}$, then

$$
\frac{d y}{d x}=\lambda e^{\lambda x} \Longrightarrow \lambda e^{\lambda x}+a_{1} e^{\lambda x}=0 \Longrightarrow a_{1}=-\lambda
$$

Hence, the general solution is of the form $C e^{-a_{1} x}$. To determine C, we need an initial condition such as $y(0)$. Then $y(0)=C \Longrightarrow y(x)=y(0) e^{-a_{1} x}$

4.1.2 Second Order Case

$$
\frac{d^{2} y}{d x^{2}}+a_{1} \frac{d y}{d x}+a_{2} y=0
$$

Consider a solution in the form $y(x)=e^{\lambda x}$

$$
\begin{gathered}
\lambda^{w} e^{\lambda x}+a_{1} \lambda e^{\lambda x}+a_{2} e^{\lambda x}=0 \Longrightarrow\left(\lambda^{2}+a_{1} \lambda+a_{2}\right) e^{\lambda x}=0 \Longrightarrow \underbrace{\lambda^{2}+a_{1} \lambda+a_{2}}_{\text {characteristic equation }} \\
\lambda_{1}=\frac{-a_{1}+\sqrt{a_{1}^{2}-4 a_{2}}}{2}, \lambda_{2}=\frac{-a_{1}-\sqrt{a_{1}^{2}-4 a_{2}}}{2}
\end{gathered}
$$

for real a_{1} and a_{2}, we may have two real roots or a pair of complex conjugate roots the general solution is of the form

$$
y(x)=C_{1} e^{\lambda_{1} x}+C_{2} e^{\lambda_{2} x}
$$

If we are given initial conditions such as $y(0)$ and $y^{\prime}(0)$ can uniquely determine C_{1} and C_{2}.

Complex Roots Case

For complex root in the form $\lambda_{1}=a+j b$ and it's conjugate $\lambda_{2}=a-j b$, we add the equation

$$
C_{1} e^{a+j b} x+C_{2} e^{a-j b} x=e^{a x}(A \cos (b x)+B \sin (b x))
$$

to the solution of the differential equation.
Theorem: If the characteristic equation of an $n^{\text {th }}$ order linear constant coefficient differential equation has n-distinct roots, $\lambda_{1}, \ldots, \lambda_{n}$ the set $\left\{e^{\lambda_{1} x}, \ldots, e^{\lambda_{n} x}\right\}$ is linearly independent in any interval $\mathbb{I} \subset \mathbb{R}$.

Proof: Assume that they are linearly dependent. Then, there should be a set of coefficients not all zero such that

$$
\alpha_{1} e^{\lambda_{1} x}+\alpha_{2} e^{\lambda_{2} x}+\cdots+\alpha_{n} e^{\lambda_{n} x}=0, \forall x \in \mathbb{I}
$$

By taking successive derivatives of both sides we get:

$$
\begin{aligned}
& \alpha_{1} \lambda_{1} e^{\lambda_{1} x}+\alpha_{2} \lambda_{2} e^{\lambda_{2} x}+\cdots+\alpha_{n} \lambda_{n} e^{\lambda_{n} x}=0 \\
& \alpha_{1} \lambda_{1}^{n-1} e^{\lambda_{1} x}+\alpha_{2} \lambda_{2}^{n-1} e^{\lambda_{2} x}+\cdots+\alpha_{n} \lambda_{n}^{n-1} e^{\lambda_{n} x}=0 \\
& \Longrightarrow \underbrace{\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\lambda_{1} & \lambda_{2} & \ldots & \lambda_{n} \\
\vdots & \vdots & & \vdots \\
\lambda_{1}^{n-1} & \lambda_{2}^{n-1} & \ldots & \lambda_{n}^{n-1}
\end{array}\right]} \cdot\left[\begin{array}{c}
\alpha_{1} e^{\lambda_{1} x} \\
\alpha_{2} e^{\lambda_{1} x} \\
\ldots \\
\alpha_{n} e^{\lambda_{n} x}
\end{array}\right]=\underline{0} \Longrightarrow\left[\begin{array}{c}
\alpha_{1} e^{\lambda_{1} x} \\
\alpha_{2} e^{\lambda_{1} x} \\
\ldots \\
\alpha_{n} e^{\lambda_{n} x}
\end{array}\right]=\underline{0} \Longrightarrow \alpha_{i} e^{\lambda_{i} x}=0 \Longrightarrow \alpha_{i}=0
\end{aligned}
$$

Full Rank Vandermonde Matrix for $\lambda_{i} \neq \lambda_{j}$
which is a contradiction since all of the coefficients are zero.

Repeated Roots Case

Theorem: If λ_{1} is a root of order k of the characteristic equation, then $e^{\lambda_{1} x}, x e^{\lambda_{1} x}, \ldots, x^{k-1} e^{\lambda_{1} x}$ are linearly independent solutions of the differential equation.

Proof: Let $L[y]=0$ be the operator form of

$$
L[b]=\frac{d^{n} b}{d x^{n}}+a_{1} \frac{d^{n-1} b}{d x^{n-1}}+\cdots+a_{n-1} \frac{d b}{d x}+a_{n} b
$$

Then $L\left[e^{\lambda x}\right]=\left(\lambda-\lambda_{1}\right)^{k} p(\lambda) e^{\lambda x}$. Since λ_{1} is a root with multiplicity k and order of $p(\lambda)$ is $(n-k)$.

$$
\Longrightarrow L\left[e^{\lambda_{1} x}\right]=0 \Longrightarrow e^{\lambda_{1} x} \text { is a solution }
$$

Now, want to show that $x e^{\lambda_{1} x}$ is also a solution

$$
\frac{d}{d \lambda} L\left[e^{\lambda x}\right]=\frac{d}{d \lambda}\left[\left(\lambda-\lambda_{1}\right)^{k} p(\lambda) e^{\lambda x}\right]=k\left(\lambda-\lambda_{1}\right)^{k-1} p(\lambda) e^{\lambda x}+\left(\lambda-\lambda_{1}\right)^{k} \frac{d}{d \lambda}\left(p(\lambda) e^{\lambda x}\right)
$$

Note that:

$$
\begin{gathered}
\frac{d}{d \lambda} L\left[e^{\lambda x}\right]=L\left[\frac{d}{d \lambda} e^{\lambda x}\right]=L\left[x e^{\lambda x}\right] \\
\left.\Longrightarrow L\left[x e^{\lambda x}\right]\right|_{\lambda=\lambda_{1}}=\underbrace{k\left(\lambda-\lambda_{1}\right)^{k-1} p(\lambda) e^{\lambda x}+\left.\left(\lambda-\lambda_{1}\right)^{k} \frac{d}{d \lambda}\left(p(\lambda) e^{\lambda x}\right)\right|_{\lambda=\lambda_{1}}}_{0} \\
\Longrightarrow L\left[x e^{\lambda_{1} x}\right]=0 \Longrightarrow x e^{\lambda_{1} x} \text { is also a solution. }
\end{gathered}
$$

Can apply this same procedure to prove that $x^{2} e^{\lambda_{1} x}, \ldots, x^{k-1} e^{\lambda_{1} x}$ are also solution.

Chapter 5

Laplace Transforms

5.1 Introduction

General linear integral transform is of the following form

$$
F(s)=\int_{a}^{b} K(t, s) f(t) d t, K(t, s): \text { Transformation kernel }
$$

The Laplace Transform:

$$
F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

s : complex valued transform domain variable.
Similar to z-transform, which reduces difference equations to linear algebraic equations, the Laplace Transform reduces the linear constant coefficient differential equations to linear algebraic equations.

5.2 Calculation of the Transform

$$
F(s)=\int_{0}^{\infty} e^{-s t} d t
$$

convergence is assured if $|f(t)| \leq K e^{c t}$ for $t>T$

Theorem:For $f(t)$ satisfying
(i) $f(t)$ is piecewise continuous on $0 \leq t \leq A$, with finite number of discontinuities.
(ii) $f(t)$ is of exponential order, $|f(t)| \leq K e^{c t}, t \geq T$, the Laplace Transform $F(s)$ exists for $\operatorname{Re}\{s\}>$ c.

Proof:

$$
\begin{gathered}
F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t=\underbrace{\int_{0}^{T} f(t) e^{-s t} d t}_{\text {exists for all s if }(\mathrm{i}) \text { is valid }}+\int_{T}^{\infty} f(t) e^{-s t} d t \\
\left|\int_{T}^{\infty} f(t) e^{-s t} d t\right| \leq \int_{T}^{\infty}\left|f(t) \| e^{-s t}\right| d t \leq K \int_{t}^{\infty} e^{-(\operatorname{Re}\{s\}-c) t} d t=K \frac{e^{-(\operatorname{Re}\{s\}-c) T}}{\operatorname{Re}\{s\}-c}
\end{gathered}
$$

for $\operatorname{Re}\{s\}>c$

Notes:

(i) The inverse Laplace Transform is also an integral transform but requires techniques that will be introduced in EEE-242. Therefore, we will use the inspection technique like we did with the inversion of the z-transform.
(ii) The inverse of the Laplace Transform is unique if

$$
\begin{aligned}
& f_{1}(t) \stackrel{L}{\longleftrightarrow} F_{1}(s) \\
& f_{2}(t) \stackrel{L}{\longleftrightarrow} F_{2}(s)
\end{aligned}
$$

and

$$
\int_{0}^{\infty}\left|f_{1}(t)-f_{2}(t)\right| d t>0
$$

then $F_{1}(s) \neq F_{2}(s)$

5.3 Properties of Laplace Transform

(i) $L\{\alpha u(t)+\beta v(t)\}=\alpha L\{u(t)\}+\beta L\{v(t)\}$ is satisfied for $\forall \alpha, \beta, u(t)$ and $v(t)$ which are of exponential order.
(ii) $L^{-1}\{\alpha U(s)+\beta V(s)\}=\alpha L^{-1}\{U(s)\}+\beta L^{-1}\{V(s)\}$
(iii) $L\left\{f^{\prime}(t)\right\}=s L\{f(t)\}-f(0)$

Proof:

$$
\begin{aligned}
L\left\{f^{\prime}(t)\right\} & =\int_{0}^{\infty} f^{\prime}(t) e^{-s t} d t \\
& =\left.f(t) e^{-s t}\right|_{0} ^{\infty}+s \int_{0}^{\infty} f(t) e^{-s t} d t \\
& =-f(0)+s F(s)
\end{aligned}
$$

Note that this property is valid even if $f^{\prime}(t)$ is piecewise continuous.
(iv)

$$
\begin{aligned}
L\left\{f^{\prime \prime}(t)\right\} & =s L\left\{f^{\prime}(t)\right\}-f^{\prime}(0) \\
& =s^{2} L\{f(t)\}-s f(0)-f^{\prime}(0) \\
& \Longrightarrow L\left\{f^{(k)}(t)\right\}=s^{k} L\{f(t)\}-\sum_{i=1}^{k} s^{k-i} f^{(i-1)}(0)
\end{aligned}
$$

useful in the solution to differential equation with given initial condition.
(v) Translation: $L\left\{e^{a t} f(t)\right\} \stackrel{L}{\longleftrightarrow} F(s-a)$
(vi) Translation in Time: $L\left\{f\left(t-t_{0}\right)\right\} \stackrel{L}{\longleftrightarrow} e^{-s t_{0}} F(s)$

Proof:

$$
\begin{aligned}
L\left\{f\left(t-t_{0}\right)\right\} & =\int_{0}^{\infty} f(\underbrace{t-t_{0}}_{\hat{t}}) e^{-s\left(\hat{t}+t_{0}\right)} d t \\
& =\int_{t_{0}}^{\infty} f(\hat{t}) e^{-s\left(\hat{t}+t_{0}\right)} d \hat{t} \\
& =e^{-s_{0} t} F(s), f(\hat{t})=0 \text { for } \hat{t}<0
\end{aligned}
$$

(vii)

$$
L\left\{t^{n} f(t)\right\}=(-1)^{n} F^{(n)}(s)
$$

(viii) Convolution property: For $f(t)$ and $g(t)$ which are zero for $t<0$, their convolution is defined as:

$$
h(t)=f(t) \circledast g(t)=(f \circledast g)(t)=\int_{0}^{\infty} f(\tau) g(t-\tau) d \tau
$$

The Laplace Transform of $h(t)$ is:

$$
\begin{aligned}
H(s) & =\int_{0}^{\infty} h(t) e^{-s t} \\
& =\int_{0}^{\infty} \int_{0}^{t} f(\tau) g(t-\tau) d \tau e^{-s t} d t \\
& =\int_{0}^{\infty} \int_{\tau}^{\infty} f(\tau) g(t-\tau) e^{-s t} d t d \tau \\
& =\int_{0}^{\infty} f(\tau)[\int_{0}^{\infty} g(\underbrace{t-\tau}_{\mu}) e^{-s t} d t] d \tau \\
& =\int_{0}^{\infty} f(\tau)\left[\int_{0}^{\infty} g(\mu) e^{-s(\tau+\mu)} d \mu\right] d \tau \\
& =\int_{0}^{\infty} f(\tau)\left[\int_{0}^{\infty} g(\mu) e^{-s \mu} d \mu\right] e^{-s \tau} d \tau \\
& =\left[\int_{0}^{\infty} f(\tau) e^{-s \tau} d \tau\right]\left[\int_{0}^{\infty} g(\mu) e^{-s \mu} d \mu\right] \\
& =F(s) \cdot G(s) \Longrightarrow[H(s)=F(s) \cdot G(s)
\end{aligned}
$$

5.3.1 Transformation Table

$f(t)=\mathcal{L}^{-1}\{F(s)\}$	$F(s)=\mathcal{L}\{f(t)\}$	$f(t)=\mathcal{L}^{-1}\{F(s)\}$	$F(s)=\mathcal{L}\{f(t)\}$	
1	$\frac{1}{s}$	$e^{a t}$	$\frac{1}{s-a}$	
t^{n}	$\frac{n!}{s^{n+1}}$	\sqrt{t}	$\frac{\sqrt{\pi}}{2 s^{3 / 2}}$	
$\sin (a t)$	$\frac{a}{s^{2}+a^{2}}$	$\cos (a t)$	$\frac{s}{s^{2}+a^{2}}$	
$t \sin (a t)$	$\frac{2 a s}{\left(s^{2}+a^{2}\right)^{2}}$	$t \cos (a t)$	$\frac{s^{2}-a^{2}}{\left(s^{2}+a^{2}\right)^{2}}$	
$\sin (a t+b)$	$\frac{s \sin (b)+a \cos (b)}{s^{2}+a^{2}}$	$\cos (a t+b)$	$\frac{s \cos (b)-a \sin (b)}{s^{2}+a^{2}}$	
$\sinh (a t)$				

5.4 Solution to Linear Constant Coefficient Differential Equations by Laplace Transform

Example

$$
\begin{array}{r}
x^{\prime \prime}+a x^{\prime}+b x=f(t) \\
\downarrow L \\
\left(s^{2} \mathbb{X}(s)-s x(0)-x^{\prime}(0)\right)+a(s \mathbb{X}(s)-x(0))+b \mathbb{X}(s)=F(s) \\
\Longrightarrow\left(s^{2}+a s+b\right) \mathbb{X}(s)=s x(0)+a x(0)+x^{\prime}(0)+F(s) \\
\Longrightarrow \mathbb{X}(s)=\underbrace{\frac{F+a) x(0)+x^{\prime}(0)}{s^{2}+a s+b}}_{\begin{array}{c}
\text { invert by partial } \\
\text { fraction expansion }
\end{array}}+\underbrace{\frac{F(s)}{s^{2}+a s+b}}_{\begin{array}{c}
\text { invert by using partial } \\
\text { fraction expansion or } \\
\text { convolution property }
\end{array}}
\end{array}
$$

5.5 Systems of Linear Differential Equations

$$
\begin{gathered}
a_{11}(t) x_{1}^{\prime}+\cdots+a_{1 n}(t) x_{n}^{\prime}+b_{11}(t) x_{1}+\cdots+b_{1 n}(t) x_{n}=f_{1}(t) \\
\vdots \\
a_{n 1}(t) x_{1}^{\prime}+\cdots+a_{n n}(t) x_{n}^{\prime}+b_{n 1}(t) x_{1}+\cdots+b_{n n}(t) x_{n}=f_{n}(t)
\end{gathered}
$$

$a_{i j}(t)$ and $b_{i j}(t)$ are known coefficients.
Theorem: Let $a_{i j}(t), 1 \leq i, j \leq n$ and $f_{i}(t), 1 \leq i \leq n$ be continuous on a closed interval \mathbb{I}. Also, let
$x_{i}\left(t_{0}\right)=b_{i}, 1 \leq i \leq n$ for $t_{0} \in \mathbb{I}$. Then the system

$$
\begin{gathered}
x_{1}^{\prime}=a_{11}(t) x_{1}+\ldots+a_{1 n}(t) x_{n}+f_{1}(t) \\
\vdots \\
x_{n}^{\prime}=a_{n 1}(t) x_{1}+\ldots+a_{n n}(t) x_{n}+f_{n}(t)
\end{gathered}
$$

has a unique solution on the entire interval \mathbb{I}. Note that
(i) The left hand side has individual derivatives. This form can be obtained by using Gauss-Jordan elimination on the original system.
(ii) The system can be written as:

$$
\underline{x}^{\prime}=\underline{\underline{A}}(t) \underline{x}+\underline{f}
$$

where

$$
\underline{x}=\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right], \underline{\underline{A}}(t)=\left[a_{i j}(t)\right]_{n \times n}, \underline{f}=\left[\begin{array}{c}
f_{1}(t) \\
\vdots \\
f_{n}(t)
\end{array}\right]
$$

