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Chapter 1

Complex Numbers and Complex
Algebra

1.1 Introduction

Complex numbers have been introduced to have complete set of solutions for an polynomial equation.
Notation: z € C,z =a + b

a : the real part of z

b : the imaginary part of z

i:roottothez?+1=0

a = Re{a + ib} b= Im{a + ib}

Definitions:

1. If z = Re{z}, z is called ”purely real”
2. If z = Im{z}, z is called "purely imaginary”
3. If 2y = 2, then Re{z1} = Re{z2} and Im{z1} = Im{z2}

insert image here

1.2 Algebraic Definitions

1.2.1 Summation
Let zZ1 = ay + ’Lb1 and 2o = a2 + ibg, then
z=2z1+22=a+1ib

Where
a=ay+ az

b="b1 + by
Properties of Complex Summation:
(i) z1 + 22 = 22 + 21 ; Commutative
(i1) 2z1 + (22 + 23) = (21 + 22) + 23 ; Associative

(iii) 21 + (0+140) = 2



(iv) for any z; € C, there exists a z5 such that z; + 29 =0
(v) Additive inverse of z = a + ib is —z = —a — ib and is unique

(vi) Subtraction of two complex numbers is defined as

z=2z1+(—22)

1.2.2 Multiplication

Let 21 = a1 +iby and 25 = as + ibo, then z = 27 - 25 is defined as:

z= (a1 + ibl)(ag + iby)
= (a1a2 — b1b2) + i(albg + agbl)

Properties of Complex Multiplication
(1 Z1R9 = 29221

(ii) z1(2223) = (2122)23

—_

(iv) 1.2, =

)
)

(iil) 21(22 + 23) = 2122 + 2123
)

(v) If 21 # 0, then there exists a z such that z; - 2 =1
)

(vi) If 21 # 0, then its inverse is unique

1.2.3 More Definitions

For z = a + b, its complex conjugate is defined as:

and its "modulus” or "magnitude” is defined as:

Properties of Complex Conjugation:
(i) ) ==
(i) (21 +22)* =27 + 25

(iil) (z122)* = 2723



1.2.4 Triangle Equation
Vz1, 22 € C, |21 + 22| < |21] + |22| Formally, z1 + 22 = (a1 + a2) + i(by + b2), Thus,
|21 4 22|* = (a1 + a2)® + (b1 + b2)?

= a3 + a3 + 2ajas + b7 + b3 + 2b1by
ai + a3 + 2|ax[lag| + b7 + b3 + 2[b1[[ba]

= (@} +03) + (a3 + 83) + 2/ (a3 + B2)(a3 + 1)

IN

Since, |ay|las] < \/(a? + b3)(a3 + b3)
|21 + 22| < af + a3 + 2|ax[|az| + b7 + b5 + 2|b1||be]
= (\/cﬁ + b} + /a3 + b3)?
= (lz1] + |22])?

Thus, |21 + 22| < |21]| + |22]

1.3 Elementary Complex Functions

w(z) = w(e + iy)
= u(a,y) + iv(z,y)



Chapter 2

Systems of Linear Algebraic
Equations

Modelling physical systems in terms of linear systems of equation and obtaining solutions of these
systems is of fundamental importance in engineering.

General form of a system of linear algebraic equation is:

a1121 + a1222+ -+ + A1 Ty = C1

2171 + Q22T2+ - -+ + A2pTy = C2
m equations

Ap1T1 + Ap2®2+ -« + AppTn = Cp

a;; : coefficients
¢; : values
x; : unknowns

If we replace 1 with s1, 2 and ss, ..., x, with so in this system and satisfy all the equations,
we say that s1,...,s, is a solution to the given system.

If there exists one or more solutions, the system is consistent

If there is precisely one solution, the solution is called as unique

If there are more than one solutions, the solution is called as non-unique
If there are no solutions, the system is called as inconsistent

The collection of all solution is called as the solution set

In general, each equation defines a hyperplane in n-dimensional space. The system is consistent if
these hyperplanes has a common intersection. If the intersection of these hyperplanes is just one point,
then the solution is unique.

2.1

Gauss or Gaussian Elimination

Definition:



1. Addition of a multiple of one equation to another symbolically: (eg;) — (eq;) + a(eqx)
2. Multiplication of an equation by a non-zero constant symbolically: (eq;) — a(eq;)
3. Interchange of two equations symbolically: (eq;) <> (eqx)

Theorem: If one linear system is obtained from another by a finite number of elementary row opera-
tions, then the two systems are equivalent, i.e., they share the same solution set.

Proof: Let the original system be LS; and the one obtained by using elementary row operations

E
be LS;. We know that LS, LN N LSy, where E,,...,E, is a sequence of elementary row
operations. Here, by using the method of induction, we will show that LS; and LS5 share the same
solution set for g = 1:

LS, 25 1S,

Now, E; can be any of the 3 elementary row operation, we will consider all of these cases individually:
(i) E;: addition of a multiple of one equation to another:
(eq;) = (eq;) + aleqq)

e Now, if (s1,...,5,) € Sis,, then (sq,...,sy) satisfies all the equations including (eg;) and
(eqi). Hence, it satisfies the j'" equation of LSy which is (eg;) + a(eqy). Therefore:

Srs, C Sis,

o Now, if (s1,...,8,) € SLs,, then (s1,...,s,) satisfies all the equations including (eg;) and
(eqx) of LSy. Thus it also satisfies (eq;) —a(egy) as well. But this is the (eq;) of LSy. Thus,
(s1,-..,8n) also satisfies all the equations in LS;. Hence (s1,...,8,) € Srs,. Therefore

Srs, C SLs,

Since
SLSQ C SL51 and SLS1 C SL5'2 — SLS2 = SL5’1

(ii) E7: Multiplication of an equation by a non-zero constant
(eq;) = aleq;)

e (81,...,8,) € Spg, then it solves all the equations in LS. The LS, differs from LS in just
its j'" equation. Therefore, to show that (si,...,s,) € SLs, also satisfies the (eq;) of LSs.
Since (eg;) in LS, is obtained by multiplying both sides of (egq;) of LSi, and (s1,...,5s)
satisfies this equation, (s1,...,s,) also satisfies (eq;) of LS>. Therefore (s1,...,s,) € Sis,
as well. Therefore Srs, C Sis,

aill ai12 e A1n
a1 a22 N agn
an1  Qn2 Ann



Chapter 3

Linear Constant Coefficient
Difference Equations

3.1 Introduction

z[n] = a1zfn — 1)+ - + agz[n — K]

kth order difference equation

Occurs very frequently discrete time systems or discretized models of continuous time systems.
Can investigate the solution based on the following vector matrix relationship:

x[n] ar ... ... ag
) 1 0 [a1 ... ag]
Ly = : ) é = . : I 0 = z, = yn,—l
zn —k+1] 10
Since z,, ; = Az, _, we can write:
2, = A(A.. (4-20)) = A"z
where
z[0]
Ty = initial conditions
z[—k + 1]

Therefore, given z,, can find z,, for any n by multiplying x, n times wit A. But this is not the
most efficient technique, and also would not provide us a closed form solution. We can get more
insight as follows:

3.2 Eigenvalue Solution
Theorem: if (X, z) is an eigenpair of A, then z, = A"z is a solution to z,, = A"z,
Proof: z,, = A"xy = \"x

Theorem: If A has a full set of eigenvectors that span R* then z, = A"z, can be solved by

k

k
— — S\ — .
z, = E = a;\;'v; where 5 = E oY,
i=1 i=1



Proof: Simply multiply x, by A" to get
k k
Az, = Z ;i A"v; = Z QA Y,
i=1 i=1

3.3 Characteristic Equation Solution

Another alternative approach is based on the following observation:
z[n] = a1z[n — 1] + agz[n — 2] + - - - + agz[n — k]

A sequence of the form z[n] = r™ would solve the difference equation if:

ko Tl g =0, Wn

n _ . n—1
r-=a, " +---+agr r

= "R P —artT - —a) =0

characteristic equation = 0 at r

= r should be a root of the characteristic equation

This is equivalent to r being and eigenvalue of the A. Hence, there can be at most £ distinct r values.
If they are all distinct, then a solution to the original problem be formulated easily by:

k
z[n] =arf + -+ agrp = E arf, n>0
i=1

where if we are given a set of initial conditions such as

(0] z[—1]
: or :
dl—k+1]| e[k
we can find «;’s as the solution to
rit o ] [ x[—1]
rfk r,;l oz.k x—k
invertible

If a root r; has the multiplicity m, then solution can be written as

z[n] = ory + -+ oyri +oagpanri + -+ ozj_‘_mnm*l?“? + o amtkrp

3.4 Z-Transform

A very useful transformation that is commonly used to investigate and design of discrete time systems.
It is also useful in the solution of difference equations.

Definition: Given a sequence xz[n], it is also X(z)isde finedas

X(z) = Z z[n]z™"

n=0

when the summation converges.

Facts



1. For finite length sequences z transform converges for any z, except may be z = 0.

2. If the z-transform of a sequence converges, it converges for al |z| > ro, where ¢ depends on the
sequence.

Definition: Those z-values for which X(F) is defined are said to be in the "Region of Convergence”,
or ROC.
Properties

(i) z-transform is linear: Vzi[n|, z2[n] a1 and as

21[n] «Z— X4(2), ROC,

22[n] «Z— Xa(2), ROCs

Then
a1 [n] + aswaln] «2— X1 (2) + Xa(2), ROCy, ROCy C ROC

z[n] +Z X(z)
x[n — 1] s 2 1X(2) + 2[-1]
(iii)
z[n] +Z X(z)

x[n — k| s 270X (2) + 2R [ —1] 4 2R 202 4+ -+ [k
z[n]=a", n>0
X(z) = Za”z_"
n=0

= (=)
n=0

1
= m, |az71| <l = |Cl| < |Z| . ROC

Il
1
8
3
S
3
N\
s
+
=
|
N



Note: If the forcing input is one of the eigenvalues, it causes a resonance in the solution, then the
z-transform of it will be multiplied with n.



Chapter 4

Linear Constant Coefficient
Differential Equations

4.1 Homogeneous Differential Equation

dr y an— 1 y dy h )
+a—+ - +ap_1— + a,y = 04 Homogenous n'"* order Linear, Constant Coeff. DE
dxm daxn—1 dx

4.1.1 First Order Case

dy
< — 0
dr + a1y

Consider a solution in the form y(z) = e**, then

dy

pri A = XM 4 a1eM =0 = a; = —\
x

Hence, the general solution is of the form Ce™%'*. To determine C', we need an initial condition such
as y(0). Then y(0) = C = y(z) = y(0)e~*

4.1.2 Second Order Case

d? d
ﬁ—&-ald—z—kagyzo
Az

Consider a solution in the form y(x) = e

AP 4 g Ae + age =0 = (N2 +ai)\+ ag)e’\” =0 = MN4+aurta
—_——————

characteristic equation

PO + /a3 — 4as N = T Va3 —4das
2 Tt

2

for real a; and as, we may have two real roots or a pair of complex conjugate roots the general solution
is of the form

y(x) = CreM™ 4 Coe>”

If we are given initial conditions such as y(0) and y’(0) can uniquely determine C; and Cs.

10



Complex Roots Case

For complex root in the form A\; = a 4 jb and it’s conjugate Ao = a — jb, we add the equation
Cre®tibg 4 Che® I = %% (A cos(bx) + Bsin(bx))

to the solution of the differential equation.

Theorem: If the characteristic equation of an n*" order linear constant coefficient differential equation
has n-distinct roots, Aq,... , A, the set {e’\””, e e’\”x} is linearly independent in any interval T C R.

Proof: Assume that they are linearly dependent. Then, there should be a set of coefficients not
all zero such that
aleAlI + 0[26A2$ + e+ ane)‘"”” =0, Vrel

By taking successive derivatives of both sides we get:

A EMT 4 andee™T 4oy A, e = ()

al)\’ffle’\lw + ag)\g‘*le’\” + ot ap ATt =

)\1 )il .« )\1 ale)\lw ale/\lw
1 2 . n A1z Az
- . . . .| @2 =0 = G2€ :Q:>ozie)‘”":0:>ozizo

)\;l—l )\3—1 o /\271 ane)‘""” Oéne/\"x

Full Rank Vandermonde Matrix for X\;#X\;
which is a contradiction since all of the coefficients are zero.
Repeated Roots Case
Theorem: If A is a root of order k of the characteristic equation, then e*?® ze*® .. . 2F=1eM® are
linearly independent solutions of the differential equation.
Proof: Let L[y] = 0 be the operator form of
d™b d" b db
L[b] = d(Ein +G1W + - +Cln_1% +Clnb

Then L[e**] = (A — A)Fp(\)er®. Since A is a root with multiplicity k& and order of p()\) is (n — k).

— L[eM*] =0 = M7 is a solution

Now, want to show that ze*® is also a solution
d d d
L/\.L:7>\_>\k)\)\.L:k)\_)\ k—l)\)\:l; A— A\ k2 )\)xﬁt
L LI = = M) PN = KO = A)F ) + (= M) (p(0)eM)
Note that: p J
JL[G)\I] =L [d)\e)‘z} = L[ze??)
d
= L™\, = A= 2P )N + (A= 2)F e (p(V)e)
A=A
0
— LlzeM®] =0 = 2eM? is also a solution.
Can apply this same procedure to prove that z2e*? ... zF~1eM? are also solution.
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Chapter 5

Laplace Transforms

5.1 Introduction

General linear integral transform is of the following form
b
F(s) = / K(t,s)f(t)dt, K(t,s): Transformation kernel

The Laplace Transform:

F(s) = /OOO f(t)e tdt

s : complex valued transform domain variable.

Similar to z-transform, which reduces difference equations to linear algebraic equations, the Laplace
Transform reduces the linear constant coefficient differential equations to linear algebraic equations.

5.2 Calculation of the Transform
F(s) :/0 e %dt

convergence is assured if |f(¢)| < Ke® for t > T

Theorem:For f(t) satisfying
(i) f(¢) is piecewise continuous on 0 <t < A, with finite number of discontinuities.

(ii) f(t) is of exponential order, |f(t)| < Ke®, t > T, the Laplace Transform F(s) exists for Re{s} >
c.

Proof:

oo T 00
F(s) :/0 f®)e %dt = /0 f(t)e " dt +/T f(t)e " dt

exists for all s if (i) is valid

e—(Re{s}—c)T

fte‘“dt‘</ f)||e=*t dth/ P S OLY T e —
| s il <k i

12



for Re{s} > ¢

Notes:

(i) The inverse Laplace Transform is also an integral transform but requires techniques that will
be introduced in EEE-242. Therefore, we will use the inspection technique like we did with the
inversion of the z-transform.

(ii) The inverse of the Laplace Transform is unique if

and

/OO |f1(t) — fo(t)|dt >0

0
then Fy(s) # Fa(s)

5.3 Properties of Laplace Transform

(1) L{au(t) + pov(t)} = aL{u(t)} + BL{v(t)} is satisfied for Vo, 5, u(t) and v(t) which are of expo-
nential order.

(i) L=HaU(s) + BV (s)} = aL~H{U(s)} + BLTH{V (s)}
(iif) L{f ()} = sL{f ()} — £(0)

Proof:
L{f(1) = / et

= f(t)675t|go + s/oo ft)e tdt
0
= —f(0) + sF(s)
Note that this property is valid even if f(t) is piecewise continuous.
(iv)

L{f"@®)} = sL{f' (1)} = £(0)
= s*L{f(t)} — s£(0) - f'(0)

k
= L{fM()} = s*"L{f(t)} — Z PP (0)

useful in the solution to differential equation with given initial condition.

(v) Translation: L{e* f(t)} JEEEEN F(s—a)

13



(vi) Translation in Time: L{f(t —to)} LN e st F(s)

Proof:

L{fe—w) = [ " ft = tg)em gy
i

= | fesHtolgi
to

=e %'F(s), f(f)y=0fort <0

(vii)
L{"f(t)} = (—1)"F"(s)

(viii) Convolution property: For f(t) and g(t) which are zero for ¢t < 0, their convolution is defined as:

h(t) = F(t) ® glt) = (f ® g)(t /f ot —7)d

The Laplace Transform of h(t) is:

oo

gt —7)dr e” st

[

/ f(n)g(t —7)e Sdtdr

(1) /OOO g(t\\—fz)e“dt] dr
L f

r (o)
| g(u)e—S“W)du] ar
LJ O

/ au)e S”du] e Tdr
0

][ e

g
F(s)-G(s) = | H(s) = F(s) - G(s) |

f
f(r)
f(r

1) = |
-l

I

3

)
)

h(t)e st
f(r

U
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5.3.1 Transformation Table
ft) =L HF(s)} | F(s)=L{f@)} | f(t) =L H{F(s)} (s) =L{f()}
1 1 at 1
s © s—a
" n! T
! i vt 25372
sin(at) 52—;—% cos(at) 52—1—%
) 2 2 _ 2
tsin(at) ﬁ t cos(at) ﬁ
. ssin(b) + acos(b scos(b) — asin(b
sin(at + b) i (sg n azco (®) cos(at +b) COS(S2) n a; (®)
sinh(at)

5.4 Solution to Linear Constant Coefficient Differential Equa-
tions by Laplace Transform

Example

2 +ax’ +bx = f(t)
1L

(s°X(s) — s2(0) — 2'(0)) + a(sX(s) — 2(0)) + bX(s) = F(s)
= (5% +as +b)X(s) = s2(0) + azx(0) + 2/(0) + F(s)
e X(s) = (s 4+ a)x(0) + 2'(0) F(s)

s2+as+b s2+as+b

invert by using partial
fraction expansion or
convolution property

invert by partial
fraction expansion

5.5 Systems of Linear Differential Equations

apn () + -+ ar )z, + b (t)z1 + -+ bin(t)zn = f1(1)

a1 ()] + -+ @ ()2, + b1 (O)x1 + -+ + by (D), = fiu(t)
a;;(t) and b;;(t) are known coefficients.

Theorem: Let a;;(t), 1 < i,j < n and f;(t), 1 <i <n be continuous on a closed interval I. Also, let
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z;(to) = b;, 1 <i <mnfor ¢y € I. Then the system

.Z’ll = (lu(t).%’l + ...+ aln(t)xn + f1 (t)

2 =an ()1 + oo+ ()T + fr(t)
has a unique solution on the entire interval I. Note that

(i) The left hand side has individual derivatives. This form can be obtained by using Gauss-Jordan
elimination on the original system.

(ii) The system can be written as:

where
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